Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$

1) $\mathbf{F}(x, y, z)=y z \mathbf{i}+x z \mathbf{j}+x y \mathbf{k}, S$ is the part of the paraboloid $z=9-x^{2}-y^{2}$ that lies above the plane $z=5$, oriented upward.

0
2) $\mathbf{F}(x, y, z)=x^{2} y^{3} z \mathbf{i}+\sin (x y z) \mathbf{j}+x y z \mathbf{k}, S$ is the part of the cone $y^{2}=x^{2}+z^{2}$ that lies between the planes $y=0$ and $y=3$, oriented in the direction of the positive y-axis .

$$
\frac{2187}{4} \pi
$$

3) $\mathbf{F}(x, y, z)=x y z \mathbf{i}+x y \mathbf{j}+x^{2} y z \mathbf{k}, S$ consists of the top and the four sides (but not the bottom) of the cube with vertices $(\pm 1, \pm 1, \pm 1)$, oriented outward [Hint: use $\iint_{S_{1}} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S_{2}} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$]

Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. In each case C is oriented counterclockwise as viewed from above.
4) $\mathbf{F}(x, y, z)=\left(x+y^{2}\right) \mathbf{i}+\left(y+z^{2}\right) \mathbf{j}+\left(z+x^{2}\right) \mathbf{k}, C$ is the triangle with vertices $(1,0,0),(0,1,0)$, and $(0,0,1)$. -1
5) $\mathbf{F}(x, y, z)=e^{-x} \mathbf{i}+e^{x} \mathbf{j}+e^{z} \mathbf{k}, C$ is the boundary of the part of the plane $2 x+y+2 z=2$ in the first octant.

$$
2 e-4
$$

6) $\mathbf{F}(x, y, z)=y z \mathbf{i}+2 x z \mathbf{j}+e^{x y} \mathbf{k}, C$ is the circle $x^{2}+y^{2}=16, z=5$.
80π
7) Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=x^{2} z \mathbf{i}+x y^{2} \mathbf{j}+z^{2} \mathbf{k}$ and C is the curve of intersection of the plane $x+y+z=1$ and the cylinder $x^{2}+y^{2}=9$ oriented counterclockwise as viewed from above.
$\frac{81 \pi}{2}$
8) Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=x^{2} y \mathbf{i}+\frac{1}{3} x^{3} \mathbf{j}+x y \mathbf{k}$ and C is the curve of intersection of the hyperbolic paraboloid $z=y^{2}-x^{2}$ and the cylinder $x^{2}+y^{2}=1$ oriented counterclockwise as viewed from above.
π
9) Verify Stokes' Theorem is true for the vector field $\mathbf{F}(x, y, z)=y^{2} \mathbf{i}+x \mathbf{j}+z^{2} \mathbf{k}, S$ is the part of the paraboloid $z=x^{2}+y^{2}$ that lies below the plane $z=1$, oriented upward.
π
